
Lecture 14

Reflection, Transmission, and
Interesting Physical Phenomena

Much of the contents of this lecture can be found in Kong, and also the ECE 350X lecture
notes. They can be found in many textbooks, even though the notations can be slightly
different [30,31,39,45,49,60,72,76,78,79].

14.1 Reflection and Transmission—Single Interface Case

We will derive the reflection coefficients for the single interface case between two dielectric
media. These reflection coefficients are also called the Fresnel reflection coefficients because
they were first derived by Austin-Jean Fresnel (1788-1827). Note that he lived before the
completion of Maxwell’s equations in 1865. But when Fresnel derived the reflection coefficients
in 1823, they were based on the elastic theory of light; and hence, the formulas are not exactly
the same as what we are going to derive (see Born and Wolf, Principles of Optics, p. 40 [53]).

The single-interface reflection and transmission problem, with complicated mathematics,
is homomorphic to the transmission line problem. The complexity comes because we have
to keep track of the 3D polarizations of the electromagnetic fields in this case. We shall
learn later that the mathematical homomorphism can be used to exploit the simplicity of
transmission line theory in seeking the solutions to the multiple dielectric interface problems.
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14.1.1 TE Polarization (Perpendicular or E Polarization)1

Figure 14.1: A schematic showing the reflection of the TE polarization wave impinging on a
dielectric interface.

To set up the above problem, the wave in Region 1 can be written as Ei(r) +Er(r) which are
the phasor representations of the fields. We assume plane wave polarized in the y direction
where the wave vectors are βi = x̂βix+ ẑβiz, βr = x̂βrx− ẑβrz, βt = x̂βtx+ ẑβtz, respectively
for the incident, reflected, and transmitted waves. Then

Ei = ŷE0e
−jβi·r = ŷE0e

−jβixx−jβizz (14.1.1)

and

Er = ŷRTEE0e
−jβr·r = ŷRTEE0e

−jβrxx+jβrzz (14.1.2)

In Region 2, we only have transmitted wave; hence

Et = ŷTTEE0e
−jβt·r = ŷTTEE0e

−jβtxx−jβtzz (14.1.3)

In the above, the incident wave is known and hence, E0 is known. From (14.1.2) and (14.1.3),
RTE and TTE are unknowns yet to be sought. To find them, we need two boundary condi-
tions to yield two equations.2 These boundary conditions are tangential E continuous and
tangential H continuous, which are n̂×E continuous and n̂×H continuous conditions at the
interface.

1These polarizations are also variously know as the s and p polarizations, a descendent from the notations
for acoustic waves where s and p stand for shear and pressure waves respectively.

2Here, we will treat this problem as a boundary value problem where the unknowns are sought from
equations obtained from boundary conditions.
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Imposing n̂×E continuous at z = 0, we get

E0e
−jβixx +RTEE0e

−jβrxx = TTEE0e
−jβtxx, ∀x (14.1.4)

In order for the above to be valid for all x, it is necessary that βix = βrx = βtx, which is also
known as the phase matching condition.3 From the above, by letting βix = βrx = β1 sin θi =
β1 sin θr, we obtain that θr = θi or that the law of reflection that the angle of reflection is
equal to the angle of incidence. By letting βix = β1 sin θi = βtx = β2 sin θt, we obtain Snell’s
law that β1 sin θi = β2 sin θt. (This law of refraction that was also known in the Islamic world
in the 900 AD. [87]). Now, canceling common terms on both sides of the equation (14.1.4),
the above simplifies to

1 +RTE = TTE (14.1.5)

To impose n̂ ×H continuous, one needs to find the H field using ∇ × E = −jωµH, or
that H = −jβ ×E/(−jωµ) = β ×E/(ωµ). By so doing

Hi =
βi ×Ei

ωµ1
=
βi × ŷ
ωµ1

E0e
−jβi·r =

ẑβix − x̂βiz
ωµ1

E0e
−jβi·r (14.1.6)

Hr =
βr ×Er

ωµ1
=
βr × ŷ
ωµ1

RTEE0e
−jβr·r =

ẑβrx + x̂βrz
ωµ2

RTEE0e
−jβr·r (14.1.7)

Ht =
βt ×Et

ωµ2
=
βt × ŷ
ωµ2

TTEE0e
−jβt·r =

ẑβtx − x̂βtz
ωµ2

TTEE0e
−jβt·r (14.1.8)

Imposing n̂×H continuous or Hx continuous at z = 0, we have

− βiz
ωµ1

E0e
−jβixx +

βrz
ωµ1

RTEE0e
−jβrxx = − βtz

ωµ2
TTEE0e

−jβtxx (14.1.9)

As mentioned before, the phase-matching condition requires that βix = βrx = βtx. The
dispersion relation for plane waves requires that

β2
ix + β2

iz = β2
rx + β2

rz = ω2µ1ε1 = β2
1 , medium 1 (14.1.10)

β2
tx + β2

tz = ω2µ2ε2 = β2
2 , medium 2 (14.1.11)

Since

βix = βrx = βtx = βx (14.1.12)

the above implies that

βiz = βrz = β1z (14.1.13)

Moreover, βtz = β2z 6= β1z usually since β1 6= β2. Then (14.1.9) simplifies to

β1z

µ1
(1−RTE) =

β2z

µ2
TTE (14.1.14)

3The phase-matching condition can also be proved by taking the Fourier transform of the equation with
respect to x. Among the physics community, this is also known as momentum matching, as the wavenumber
of a wave is related to the momentum of the particle.
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where β1z =
√
β2

1 − β2
x, and β2z =

√
β2

2 − β2
x.

Solving (14.1.5) and (14.1.14) for RTE and TTE yields

RTE =

(
β1z

µ1
− β2z

µ2

)/(
β1z

µ1
+
β2z

µ2

)
(14.1.15)

TTE = 2

(
β1z

µ1

)/(
β1z

µ1
+
β2z

µ2

)
(14.1.16)

14.1.2 TM Polarization (Parallel or H Polarization)

Figure 14.2: A similar schematic showing the reflection of the TM polarization wave impinging
on a dielectric interface. The solution to this problem can be easily obtained by invoking
duality principle.

The solution to the TM polarization case can be obtained by invoking duality principle where
we do the substitution E→ H, H→ −E, and µ
 ε as shown in Figure 14.2. The reflection
coefficient for the TM magnetic field is then

RTM =

(
β1z

ε1
− β2z

ε2

)/(
β1z

ε1
+
β2z

ε2

)
(14.1.17)

TTM = 2

(
β1z

ε1

)/(
β1z

ε1
+
β2z

ε2

)
(14.1.18)

Please remember that RTM and TTM are reflection and transmission coefficients for the
magnetic fields, whereas RTE and TTE are those for the electric fields. Some textbooks may
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define these reflection coefficients based on electric field only, and they will look different, and
duality principle cannot be applied.

14.2 Interesting Physical Phenomena

Three interesting physical phenomena emerge from the solutions of the single-interface prob-
lem. They are total internal reflection, Brewster angle effect, and surface plasmonic resonance.
We will look at them next.

14.2.1 Total Internal Reflection

Figure 14.3: In this figure (courtesy of J.A. Kong, Electromagnetic Wave Theory [31]), k in
the figure is synonymous with β in our lecture notes. Also, the x axis is equivalent to the z
axis in the previous figure of our lecture notes.

Total internal reflection comes about because of phase matching (also called momentum
matching). This phase-matching condition can be illustrated using β-surfaces (same as k-
surfaces in some literature), as shown in Figure 14.3. It turns out that because of phase
matching, for certain interfaces, β2z becomes pure imaginary.
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Figure 14.4: This figure (courtesy of J.A. Kong, Electromagnetic Wave Theory [31]), k in the
figure is synonymous with β in our lecture notes, and x axis is the same as our z axis of our
lecture notes.

As shown in Figures 14.3 and 14.4, because of the dispersion relation that β2
rx + β2

rz =
β2
ix + β2

iz = β2
1 , β2

tx + β2
tz = β2

2 , they are equations of two circles in 2D whose radii are β1

and β2, respectively. (The tips of the β vectors for Regions 1 and 2 have to be on a spherical
surface in the βx, βy, and βz space in the general 3D case, but in this figure, we only show a
cross section of the sphere assuming that βy = 0.)

Phase matching implies that the x-component of the β vectors are equal to each other
as shown. One sees that θi = θr in Figure 14.4, and also as θi increases, θt increases. For
an optically less dense medium where β2 < β1, according to the Snell’s law of refraction, the
transmitted β will refract away from the normal, as seen in the figure (where k is synonymous
with our β). Therefore, eventually the vector βt becomes parallel to the x axis when βix =
βrx = β2 = ω

√
µ2ε2 and θt = π/2. The incident angle at which this happens is termed the

critical angle θc (see Figure 14.4).
Since βix = β1 sin θi = βrx = β1 sin θr = β2, or

sin θr = sin θi = sin θc =
β2

β1
=

√
µ2ε2√
µ1ε1

=
n2

n1
(14.2.1)

where n1 is the reflective index defined as c0/vi =
√
µiεi/

√
µ0ε0 where vi is the phase velocity

of the wave in Region i. Hence,

θc = sin−1(n2/n1) (14.2.2)
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When θi > θc. βx > β2 and β2z =
√
β2

2 − βx2 becomes pure imaginary. When β2z

becomes pure imaginary, the wave cannot propagate in Region 2, or β2z = −jα2z, and the
wave becomes evanescent. The reflection coefficient (14.1.15) becomes of the form

RTE = (A− jB)/(A+ jB) (14.2.3)

It is clear that |RTE | = 1 and that RTE = ejθTE . Therefore, a total internally reflected wave
suffers a phase shift. A phase shift in the frequency domain corresponds to a time delay in
the time domain. Such a time delay is achieved by the wave traveling laterally in Region 2
before being refracted back to Region 1. Such a lateral shift is called the Goos-Hanschen shift
as shown in Figure 14.5 [53]. A wave that travels laterally along the surface of two media is
also known as lateral waves [88,89].

Please be reminded that total internal reflection comes about entirely due to the phase-
matching condition when Region 2 is a faster medium than Region 1. Hence, it will occur
with all manner of waves, such as elastic waves, sound waves, seismic waves, quantum waves
etc.

Figure 14.5: Goos-Hanschen Shift. A phase delay is equivalent to a time delay (courtesy of
Paul R. Berman (2012), Scholarpedia, 7(3):11584 [90]).

The guidance of a wave in a dielectric slab is due to total internal reflection at the dielectric-
to-air interface. The wave bounces between the two interfaces of the slab, and creates evanes-
cent waves outside, as shown in Figure 14.6. The guidance of waves in an optical fiber works
by similar mechanism of total internal reflection, as shown in Figure 14.7. Due to the tremen-
dous impact the optical fiber has on modern-day communications, Charles Kao, the father of
the optical fiber, was awarded the Nobel Prize in 2009. His work was first published in [91].
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Figure 14.6: The total internal reflections at the two interfaces of a thin-film waveguide can
be used to guide an optical wave (courtesy of E.N. Glytsis, NTUA, Greece [92]).

Figure 14.7: An optical fiber consists of a core and a cladding region. Total internal reflections
occur at the core-cladding interface. They guide an optical wave in the fiber (courtesy of
Wikepedia [93]).

Waveguides have affected international communications for over a hundred year now.
Since telegraphy was in place before the full advent of Maxwell’s equations, submarine cables
for global communications were laid as early as 1850’s. Figure 14.8 shows a submarine cable
from 1869 using coaxial cable, and one used in the modern world using optical fiber.
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Figure 14.8: The picture of an old 1869 submarine cable made of coaxial cables (left), and
modern submarine cable made of optical fibers (right) (courtesy of Atlantic-Cable [94], and
Wikipedia [95]).
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